
Citation: Miller, T.; Mikiciuk, G.;

Kisiel, A.; Mikiciuk, M.; Paliwoda, D.;

Sas-Paszt, L.; Cembrowska-Lech, D.;
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Abstract: Drought conditions pose significant challenges to sustainable agriculture and food security.
Identifying microbial strains that can mitigate drought effects is crucial to enhance crop resilience and
productivity. This study presents a comprehensive comparison of several machine learning models,
including Random Forest, Decision Tree, XGBoost, Support Vector Machine (SVM), and Artificial
Neural Network (ANN), to predict optimal microbial strains for this purpose. Models were assessed
on multiple metrics, such as accuracy, standard deviation of results, gains, total computation time,
and training time per 1000 rows of data. Notably, the Gradient Boosted Trees model outperformed
others in accuracy but required extensive computational resources. This underscores the balance
between accuracy and computational efficiency in machine learning applications. Leveraging ma-
chine learning for selecting microbial strains signifies a leap beyond traditional methods, offering
improved efficiency and efficacy. These insights hold profound implications for agriculture, especially
concerning drought mitigation, thus furthering the cause of sustainable agriculture and ensuring
food security.

Keywords: machine learning; predictive analytics; soil microbiome; climate resilience; crop yield
enhancement; SVM; ANN; data-driven agriculture; sustainable farming practices; crop stress man-
agement; agricultural biotechnology; artificial intelligence

1. Introduction

Drought is a major abiotic stress factor that significantly impacts agricultural pro-
ductivity worldwide. It affects the growth and yield of crops, posing a serious threat to
food security. With climate change, the frequency and severity of drought conditions are
expected to increase, making it a pressing issue that needs to be addressed [1–3].

One promising approach to mitigate the detrimental effects of drought on crops
involves the use of microbial strains, specifically plant-growth-promoting rhizobacteria
(PGPR). These beneficial bacteria colonize the rhizosphere—the region of soil in the vicinity
of plant roots—and promote plant growth through various mechanisms. They can enhance
water uptake by improving root system architecture, produce plant growth hormones that
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stimulate growth and development, and increase nutrient availability by solubilizing soil
nutrients, thereby helping plants withstand drought conditions [4,5].

In addition to these direct benefits to the plants, PGPR also plays a crucial role in main-
taining soil health. They contribute to the formation of soil aggregates, which improves soil
structure and water-holding capacity. This is particularly important in drought conditions,
where water availability in the soil is limited [6–8].

Recent research has also highlighted the potential role of PGPR in reducing greenhouse
gas emissions under different soil moisture conditions. Certain strains of PGPR can reduce
the emission of nitrous oxide, a potent greenhouse gas, from the soil. This not only helps in
mitigating climate change but also improves the efficiency of nitrogen use by the plants,
which is often reduced under drought conditions [9–11].

Thus, the selection of appropriate microbial strains is of paramount importance in
sustainable agriculture, particularly in the face of increasing drought events due to climate
change. By harnessing the power of these beneficial microbes, we can develop more resilient
agricultural systems that can thrive even under adverse environmental conditions [12–14].

Given the vast diversity of microbial strains and the complexity of plant–microbe–
soil interactions, selecting the most effective strains for specific crops and environmental
conditions is a challenging task. Each microbial strain has a unique set of traits and
capabilities, and their effectiveness can vary depending on the specific crop, soil type,
and environmental conditions. Furthermore, the interactions between different microbial
strains, as well as their interactions with the plants and the soil, add another layer of
complexity to this task [15–17].

This is where predictive models come into play. These models, powered by advanced
machine learning algorithms, can analyze large datasets of microbial traits, environmental
factors, and plant responses to predict which strains would be most beneficial under certain
conditions. They can handle the high dimensionality and complexity of the data, uncover
hidden patterns and relationships, and make accurate predictions even with incomplete or
noisy data [18–20].

For example, a predictive model could analyze data on microbial traits such as ni-
trogen fixation ability, phosphate solubilization, production of plant growth hormones,
and resistance to environmental stresses, along with data on soil properties and climatic
conditions, to predict the effectiveness of different microbial strains in promoting plant
growth under drought conditions [21–23].

Such models can greatly enhance the efficiency and effectiveness of microbial strain
selection. Instead of relying on trial-and-error or time-consuming laboratory tests, re-
searchers and farmers can use these models to make informed decisions about which
microbial strains to use. This can lead to improved crop resilience and productivity under
drought conditions, and ultimately contribute to the sustainability and resilience of our
agricultural systems [24–26].

Moreover, these predictive models can also facilitate the discovery of new beneficial
microbial strains and the design of synthetic microbial communities tailored to specific
crops and environments. They can also provide valuable insights into the underlying mech-
anisms of plant–microbe–soil interactions, advancing our understanding of this important
aspect of agroecology [27–29].

The aim of this study is to present a comprehensive comparison of several machine
learning models in predicting the optimal microbial strains for mitigating drought effects
in agriculture. This research seeks to highlight the potential trade-off between accuracy and
computational efficiency in machine learning applications, and underscore the significant
advancement that these models represent over traditional methods in the selection of
microbial strains. Through this study, we hope to enhance the efficiency and effectiveness
of the selection process of microbial strains and contribute to sustainable agriculture and
food security, especially in the context of drought mitigation.
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2. Materials and Methods
2.1. Description of the Data on Microbial Strains and Drought Conditions

The data used in this study were derived from two previous studies on the effects
of rhizosphere bacteria on strawberry plants under water deficit and the use of plant-
growth-promoting rhizobacteria to reduce greenhouse gasses in strawberry cultivation
under different soil moisture conditions [30,31].

In these studies, a variety of microbial strains were used, including Bacillus sp., Pantoea
sp., Azotobacter sp., and Pseudomonas sp. These strains were selected for their plant-growth-
promoting traits, which were confirmed under conditions of water deficit. The strains were
inoculated into the growth substrate near the root system of the plants, with a minimum
bacterial density of 107 CFU/g.

The studies also varied the moisture content of the growth substrate as a second
experimental factor. The water potential was maintained at −10 to −15 kPa under control
conditions (optimal soil moisture), and at −40 to −45 kPa under conditions of water deficit
in the substrate (Table 1). The substrate moisture levels were varied from 6 weeks after
inoculation. The varying soil moisture conditions, specifically the water deficit, served as a
crucial factor in the model as it simulates drought conditions. Our aim was to understand
how different microbial strains perform under these varying drought scenarios.

Table 1. The level of varied moisture of the growth substrate.

Soil Moisture Condition Water Potential (kPa) Description

Control
(Optimal Soil Moisture) −10 to −15

The water potential was
maintained at this level under

control conditions.

Water Deficit −40 to −45

The water potential was
maintained at this level under
conditions of water deficit in

the substrate.

2.2. Data Collection and Measurement Methods

The studies employed a range of methods to assess the effects of the microbial strains
and drought conditions on the plants. These included the following [30,31]:

• Bioassays for Plant-Growth-Promoting Traits: The production of plant growth hor-
mones, siderophore production, and phosphate solubilization were detected using
various bioassays. ACC deaminase activity, which is associated with the ability of
bacteria to alleviate plant stress, was also measured.

• Bacterial Counts in Substrate: The bacterial populations in the substrate were assessed
using the dilution plate method. This involved taking substrate samples from each
pot and plating them on Tryptone Soya Agar. The colony-forming units (CFU) were
then counted after incubation.

• Chlorophyll “a” Fluorescence: The health and stress level of the plants were assessed
by measuring the parameters of chlorophyll fluorescence using a spectrofluorometer.
This provided information on the efficiency of photosystem II, which can be affected
by drought stress.

• Greenhouse Gas Emission Measurements: The emissions of NH3, CO2, N2O, and CH4
were measured using a field photoacoustic gas meter connected to a static chamber.
This allowed for the assessment of the impact of the microbial strains and drought
conditions on greenhouse gas emissions from the soil surface.

These data collection and measurement methods provided a comprehensive dataset
on the effects of different microbial strains and drought conditions on strawberry plants.
We utilized a dataset of 1500 data points, of which 70% (1050 data points) were used for
training and 30% (450 data points) for testing and validation of our machine learning
models. This dataset forms the basis for our machine learning analysis in the current study.
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2.3. Explanation of the Machine Learning Techniques Used

In this study, we employed a range of machine learning techniques to analyze the
data and make predictions about the optimal microbial strains for mitigating drought
effects. These techniques included Naive Bayes, Generalized Linear Model (GLM), Logistic
Regression, Fast Large Margin, Deep Learning, Decision Tree, Random Forest, and Gradient
Boosted Trees.

The independent variables in our model included the type of microbial strain, moisture
content, chlorophyll “a” fluorescence, greenhouse gas emissions, and bacterial counts in
the substrate. Our dependent variable was the health and stress level of the strawberry
plants, as indicated by factors such as the efficiency of photosystem II.

Naive Bayes is a simple probabilistic classifier based on applying Bayes’ theorem
with strong (naive) independence assumptions between the features. Despite its simplicity,
Naive Bayes can be surprisingly accurate, particularly for large datasets [32,33].

Generalized Linear Models (GLMs) extend the ordinary linear regression model to
allow for response variables that have error distribution models other than a normal
distribution. They are flexible in handling different types of data and are widely used in
statistical modeling and machine learning [34,35].

Logistic Regression is a statistical model that uses a logistic function to model a binary
dependent variable. In machine learning, logistic regression is a popular algorithm for
classification problems [36,37].

Fast Large Margin is a machine learning method that aims to maximize the margin
between the decision boundary and the closest data points from each class. This can lead
to more robust models that generalize better to unseen data [38,39].

Deep Learning is a subset of machine learning that involves algorithms inspired by
the structure and function of the brain called artificial neural networks. Deep learning
models are capable of learning from large, complex datasets [40,41].

Decision Trees are a type of model that makes decisions based on a series of questions,
each relating to an attribute or feature of the data. They are simple to understand and
interpret, and can handle both numerical and categorical data [42,43].

Random Forest is an ensemble learning method that constructs multiple decision trees
and aggregates their outputs to make a final prediction. It is known for its robustness, ability
to handle large datasets with high dimensionality, and resistance to overfitting [44,45].

Gradient Boosted Trees is a powerful machine learning technique for regression and
classification problems, which produces a prediction model in the form of an ensemble
of weak prediction models, typically decision trees. It builds the model in a stage-wise
fashion and generalizes them by allowing optimization of an arbitrary differentiable loss
function [46,47].

Each of these machine learning techniques has its strengths and is suited to different
types of data and prediction tasks. By using a variety of techniques, we can ensure that our
analysis is robust and that we can capture different aspects of the data.

2.4. Details of the Experimental Design and Data Analysis

The experimental design of this study involved a comprehensive comparison of several
machine learning models, namely Random Forest, Decision Tree, XGBoost, Support Vector
Machine (SVM), and Artificial Neural Network (ANN). These models were chosen due
to their diverse strengths and applicability to different types of data and prediction tasks
(Figure 1).

The data used for training and evaluating the models were derived from two previous
studies on the effects of different microbial strains on strawberry plants under water deficit
conditions. The data included information on various microbial strains, their plant-growth-
promoting traits, and the response of strawberry plants to these strains under different soil
moisture conditions.
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Figure 1. Experiment design schema.

Each machine learning model was trained on a subset of the data and then evaluated
on a separate test set.

The analysis of the results involved a detailed comparison of the performance of the
different models.

The experimental design and data analysis of this study were carefully planned and ex-
ecuted to ensure a comprehensive and reliable comparison of the machine learning models.

2.5. Model Training Specifics

1. Naive Bayes:
Algorithm Type: Probabilistic.
Training Approach: Applied Bayes theorem with an assumption of independence
among predictors. The model was trained using a maximum likelihood
estimation method.
Hyperparameters: Default priors were used, with no hyperparameter tuning applied.

2. Generalized Linear Model (GLM):
Algorithm Type: Regression.
Training Approach: The model used a link function to relate the linear combination
of the input variables to the mean of the output variable. Iteratively reweighted least
squares were employed for model optimization.
Hyperparameters: Standard exponential family distributions (e.g., Gaussian, Binomial)
were used.

3. Logistic Regression:
Algorithm Type: Classification.
Training Approach: The model employed a logistic function to model the binary
dependent variable.
Hyperparameters: L2 regularization was utilized with a default regularization strength.

4. Fast Large Margin:
Algorithm Type: Classification.
Training Approach: Used a margin-based classification method that aims to find the
hyperplane which has the largest distance to the nearest training data of any class.
Hyperparameters: Margin constraints were set with default values, with no hyperpa-
rameter tuning applied.

5. Deep Learning:
Algorithm Type: Neural network.
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Training Approach: Employed a feedforward deep neural network with backpropaga-
tion for optimization. Used ReLU activation functions for hidden layers and softmax
for the output layer.
Hyperparameters: Learning rate was set to 0.001, batch size was 32, and the model
was trained for 50 epochs.

6. Decision Tree:
Algorithm Type: Decisional.
Training Approach: Utilized a top–down, recursive, divide-and-conquer approach.
The Gini impurity was the criterion for splitting.
Hyperparameters: Maximum depth was set to 5, and a minimum of 10 samples were
required to split an internal node.

7. Random Forest:
Algorithm Type: Ensemble.
Training Approach: This model trained multiple decision trees during learning and
used averaging to improve the predictive accuracy and control overfitting.
Hyperparameters: Number of trees was set to 100, with a maximum depth of 5.

8. Gradient Boosted Trees:
Algorithm Type: Ensemble.
Training Approach: Built trees one at a time, where each new tree tried to correct
errors of the preceding one. Used a gradient descent algorithm to minimize the loss.
Hyperparameters: Learning rate was set to 0.1, 100 boosting stages were performed,
and a maximum depth of 3 was set for individual trees.

3. Results

In this empirical study, we evaluated several machine learning models, namely Naive
Bayes, Generalized Linear Model (GLM), Logistic Regression, Fast Large Margin, Deep
Learning, Decision Tree, Random Forest, and Gradient Boosted Trees. The models were
compared based on accuracy, standard deviation of their results, gains, total time, and
training time for 1000 rows of data (Table 2, Figure 2). Our machine learning analysis
identified several microbial strains as being optimal for mitigating the effects of drought
on strawberry plants. Notably, Azotobacter sp. AJ 1.2; Pantoea sp. DKB64, DKB63, and
DKB68; and Pseudomonas sp. strain PJ 1.1 emerged as the most beneficial, consistent with
previous studies.

Table 2. ML model comparison.

Model Accuracy Standard Deviation Gains Total Time Training Time (1000 Rows) R2 MAE

Naive Bayes 67% 3% 28.0 556,941.0 2014.9 0.65 5.4

Generalized Linear Model 69% 4% 42.0 543,840.0 5125.0 0.68 5.2

Logistic Regression 67% 6% 46.0 904,840.0 6985.1 0.66 5.3

Fast Large Margin 62% 3% 18.0 880,130.0 4145.8 0.60 5.9

Deep Learning 80% 6% 40.0 915,363.0 6279.8 0.97 4.0

Decision Tree 73% 8% 18.0 682,198.0 5717.3 0.72 4.7

Random Forest 71% 7% 20.0 953,485.0 5300.6 0.70 4.8

Gradient Boosted Trees 87% 4% 68.0 3,381,260.0 22,101.2 0.89 3.2

The Naive Bayes classifier achieved an accuracy of 67%, with a relatively low standard
deviation of 3%, suggesting a consistent performance across different test sets. Despite its
mediocre gains (28.0), the model demonstrated a reasonably efficient computation time
with a total time of 556,941.0 and a training time of 2014.9 per 1000 rows.

The Generalized Linear Model (GLM), on the other hand, displayed a slightly higher
accuracy of 69% with a standard deviation of 4%. It managed to attain higher gains
(42.0) compared to Naive Bayes, while maintaining a slightly lower total computation
time of 543,840.0. However, the model required a more extended training time per 1000
rows (5125.0).
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Figure 2. Accuracy and gains of each tested ML model.

Our Logistic Regression model exhibited an accuracy level on par with Naive Bayes
(67%). However, the standard deviation of this model was slightly higher (6%), indicating
less consistent performance. Its gains (46.0) surpassed both Naive Bayes and GLM, but
at the cost of higher computation time, both overall (904,840.0) and per 1000 rows during
training (6985.1).

The Fast Large Margin model reported the lowest accuracy among the models (62%)
with a standard deviation of 3%. Despite the low gains of 18.0, it outperformed GLM
and Logistic Regression in terms of computation time, with a total time of 880,130.0 and a
training time of 4145.8 per 1000 rows.

In terms of accuracy, the Deep Learning model emerged as a strong contender, achiev-
ing an accuracy of 80% with a standard deviation of 6%. It registered respectable gains
(40.0) and exhibited a reasonable computation time, with a total time of 915,363.0 and a
training time of 6279.8 per 1000 rows.

The Decision Tree model registered an accuracy of 73%, with a higher standard
deviation of 8%, suggesting somewhat inconsistent results. It mirrored the Fast Large
Margin model’s gains (18.0), but with a total computation time of 682,198.0 and a training
time of 5717.3 per 1000 rows.

The Random Forest model demonstrated an accuracy of 71% with a standard deviation
of 7%. It provided gains of 20.0, and showcased a total computation time of 953,485.0 and a
training time of 5300.6 per 1000 rows.

Finally, the Gradient Boosted Trees model emerged as the most accurate model with
an accuracy of 87% and a standard deviation of 4%. It demonstrated the highest gains
(68.0), albeit at a significant computation cost, with the highest total computation time of
3,381,260.0 and a substantially long training time of 22,101.2 per 1000 rows.

The Gradient Boosted Trees model achieved the highest accuracy and gains, suggesting
it is the most effective model for this specific task, considering only model performance.
However, its computation cost is substantially high compared to the other models, which
is a crucial consideration in a real-world application scenario. Further experiments could
involve tuning hyperparameters or exploring ensemble methods.

4. Discussion

In this study, we compared the performance of eight machine learning models—Naive
Bayes, Generalized Linear Model (GLM), Logistic Regression, Fast Large Margin, Deep
Learning, Decision Tree, Random Forest, and Gradient Boosted Trees—in predicting the
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optimal microbial strains for mitigating drought effects in agriculture. The models were
evaluated based on their accuracy, standard deviation of results, gains, total computation
time, and training time per 1000 rows of data. While our study focuses on strawberry
plants, the microbial strains identified might interact differently with other plant species.
Further research is required to determine the applicability of these results to other crops
or vegetation.

The primary objective of this study was to assess the performance of various machine
learning models in predicting optimal microbial strains for drought resistance in agriculture.
The evaluation criteria were based on several metrics, such as accuracy, standard deviation
of results, gains, total computation time, and training time per 1000 rows of data.

Quick Comparison of Models:

1. Top Performer in Accuracy: The Gradient Boosted Trees stood out with the highest
accuracy of 87%, followed closely by the Deep Learning model at 80%.

2. Computational Efficiency: In terms of total computation time, the Generalized Linear
Model was the most efficient, taking only 543,840 units of time, whereas the Gradient
Boosted Trees required a considerably higher time, clocking in at 3,381,260 units,
emphasizing a significant trade-off between accuracy and computational efficiency.

3. Consistency: When looking at the standard deviation, which indicates the consistency
of the model results, most models maintained a deviation within the 3–8% range.
The Gradient Boosted Trees, despite its high accuracy, exhibited consistency with a
standard deviation of just 4%.

4. Training Efficiency: In terms of training time for 1000 rows, the Naive Bayes algorithm
was the quickest, with a time of 2014.9 units. This contrasts sharply with the Gradient
Boosted Trees model, which took 22,101.2 units, indicating that while Gradient Boosted
Trees are accurate, they require significantly more time to train.

5. Gains: The Gradient Boosted Trees model also topped the gains metric at 68.0, with the
Logistic Regression model following at 46.0. This suggests that the Gradient Boosted
Trees not only offers high accuracy but also maximizes the true positive rate.

While each model has its strengths and areas for improvement, it is evident that the
Gradient Boosted Trees model emerges as a strong contender in multiple areas, particularly
accuracy and gains. However, it demands significant computational resources. On the
other hand, models like the Generalized Linear Model offer a balance between accuracy
and efficiency. Therefore, the selection of a model should factor in both the performance
metrics and the computational resources available. The results reiterate the importance
of understanding the specific needs of a project before selecting an appropriate machine
learning model.

The Gradient Boosted Trees model emerged as the most accurate, achieving an ac-
curacy of 87% with a standard deviation of 4%. It also demonstrated the highest gains
(68.0), suggesting that it was the most effective model for this specific task. However, it
also had the highest total computation time and training time per 1000 rows, indicating a
significant computational cost. This suggests that while Gradient Boosted Trees may be the
most accurate model, it may not be the most efficient choice for real-world applications
where computational resources and time are constraints (Table 3).

The Deep Learning model also showed strong performance, achieving an accuracy of
80% with a standard deviation of 6%. Despite its respectable gains (40.0) and reasonable
computation time, it did not outperform the Gradient Boosted Trees model in terms of
accuracy. This suggests that while Deep Learning models can handle complex, high-
dimensional data and make accurate predictions, they may not always be the best choice
for every task (Table 4).
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Table 3. Selected hyperparameters for XGBoost model.

Number of Trees Maximal Depth Learning Rate Accuracy

30.0 4.0 0.1 0.8732

30.0 7.0 0.1 0.8683

90.0 4.0 0.01 0.8573

150.0 7.0 0.01 0.8573

150.0 4.0 0.01 0.8478

90.0 7.0 0.01 0.6785

30.0 2.0 0.1 0.6785

150.0 2.0 0.01 0.6836

150.0 4.0 0.001 0.6938

90.0 4.0 0.001 0.6989

30.0 2.0 0.01 0.6989

30.0 4.0 0.01 0.7040

30.0 7.0 0.01 0.7040

Table 4. Deep Learning model metrics.

Metric Value

Model Metrics Type Multinomial

Description Metrics reported on full training frame

Model ID rm-h2o-model-model-61089

Frame ID rm-h2o-frame-model-61089

RMSE 0.8007551905

R2 0.9719184

Logloss 1.2460235

Mean Per Class Error 0.36813188

The Naive Bayes, Generalized Linear Model (GLM), and Logistic Regression models
achieved similar accuracy levels (67–69%), but with varying standard deviations, gains,
and computation times. These models are simpler than Gradient Boosted Trees and Deep
Learning, and may be more suitable for tasks with smaller datasets or fewer features.

The Fast Large Margin model reported the lowest accuracy among the models (62%),
suggesting that it may not be the best choice for this specific task. However, it had a
relatively efficient computation time, indicating that it may be a suitable choice for tasks
where speed is a priority.

The Decision Tree and Random Forest models achieved moderate accuracy levels
(73% and 71%, respectively), but with higher standard deviations, suggesting somewhat
inconsistent results. These models are known for their interpretability and robustness, and
may be more suitable for tasks where these qualities are important.

4.1. Comparative Analysis of Machine Learning Models

The comparative analysis of the machine learning models in this study provided
a comprehensive understanding of their performance, strengths, and limitations in the
context of predicting optimal microbial strains for mitigating drought effects. Each model
was evaluated based on several metrics, including accuracy, standard deviation of results,
gains, total computation time, and training time per 1000 rows of data. This multi-faceted
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evaluation allowed us to assess not only the predictive power of the models but also their
computational efficiency and consistency of performance.

The Gradient Boosted Trees model emerged as the most accurate, achieving an im-
pressive accuracy of 87%. This model, which combines the predictions of multiple weak
learners to improve accuracy, demonstrated its effectiveness in handling the complexity of
the task at hand. However, this high accuracy came with a trade-off in terms of compu-
tational resources. The Gradient Boosted Trees model had the highest total computation
time and training time per 1000 rows, indicating a significant computational cost. This
underscores a common challenge in machine learning applications: the balance between
achieving high accuracy and maintaining computational efficiency.

While the pursuit of high accuracy is a primary goal in machine learning, it is crucial
to consider the computational resources required, especially in real-world applications
where time and computational power may be limited. Therefore, the selection of a machine
learning model should not be based solely on its accuracy but should also take into account
its computational efficiency.

Moreover, the performance of machine learning models can vary depending on the
specific characteristics of the data and the task. Therefore, it is advisable to compare
multiple models to identify the one that performs best in a given context. This compar-
ative analysis approach adopted in our study provides a robust framework for selecting
the most suitable model for specific tasks in the field of microbial strain prediction for
drought mitigation.

4.2. Implications for Microbial Strain Selection in Agriculture

The findings of this study have far-reaching implications for the field of agriculture,
particularly in the context of microbial strain selection for drought mitigation. The use of
machine learning models, as demonstrated in our study, introduces a novel and efficient
approach to predicting the optimal microbial strains under specific environmental condi-
tions. This could revolutionize the current practices in microbial strain selection, which
often involve laborious and time-consuming experimental procedures.

By leveraging the power of machine learning, we can analyze large and complex
datasets of microbial traits, environmental factors, and plant responses, and make accurate
predictions about the most beneficial strains under certain conditions. This could signifi-
cantly enhance the efficiency of the selection process, enabling us to quickly identify the
strains that are most likely to improve crop resilience and productivity under drought
conditions [48–50].

Moreover, the use of machine learning models could also facilitate the customization
of microbial strain selection based on specific crop types, soil conditions, and climate factors.
This could lead to more targeted and effective agricultural practices, ultimately contributing
to sustainable agriculture and food security in the face of climate change [24,51,52].

However, it is important to note that the choice of a machine learning model can sig-
nificantly impact the accuracy of the predictions and the computational resources required.
As our study demonstrated, while some models may offer high accuracy, they may also
require substantial computational power and time. Therefore, the selection of a machine
learning model should be a careful decision that considers a balance between accuracy,
computational efficiency, and the specific requirements of the task [53].

4.3. Implications for the Selection of Microbial Strains for Drought Mitigation

The findings of this study have significant implications for the selection of microbial
strains for drought mitigation in agriculture. By leveraging machine learning models, we
can potentially enhance the efficiency and effectiveness of this process, leading to improved
crop resilience and productivity under drought conditions.

The use of machine learning models allows us to analyze large datasets of microbial
traits, environmental factors, and plant responses, and predict which microbial strains
would be most beneficial under specific conditions. This represents a significant advance-
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ment over traditional methods of microbial strain selection, which often involve time-
consuming and labor-intensive experiments [18,54].

Furthermore, the comparison of different machine learning models provides valuable
insights into their strengths and weaknesses, guiding the selection of the most suitable
model for this task. For instance, while the Gradient Boosted Trees model demonstrated the
highest accuracy, it also required substantial computational resources. On the other hand,
models like Naive Bayes and Logistic Regression offered a more balanced performance in
terms of accuracy and computational efficiency [55].

These findings underscore the importance of considering multiple factors when se-
lecting a machine learning model for microbial strain selection. While accuracy is a crucial
factor, computational efficiency and consistency of performance are also important con-
siderations, especially in real-world applications where computational resources may be
limited [56].

In conclusion, the application of machine learning models for the selection of microbial
strains holds great promise for enhancing drought mitigation in agriculture. By selecting
the most suitable model and effectively leveraging its capabilities, we can potentially
improve the resilience and productivity of crops under drought conditions, contributing to
sustainable agriculture and food security.

Discussion on Model Selection Based on Scenarios

When selecting a machine learning model for practical applications, it is essential to
strike a balance between accuracy, computational efficiency, and the specific needs of the
task at hand. Each algorithm has its strengths and weaknesses, and understanding them
can aid in informed decision making.

1. High Priority on Accuracy with Adequate Resources:
Recommended Model: Gradient Boosted Trees.
Reasoning: Achieving an accuracy of 87% and having a reasonable standard deviation
of 4%, the Gradient Boosted Trees model stands out as the top performer. However, it
also demands the highest computational resources, with a total time of 3,381,260 and
a substantial training time per 1000 rows of data.

2. Need for Quick Results with Moderate Accuracy:
Recommended Model: Generalized Linear Model or Naive Bayes.
Reasoning: Both these models offer decent accuracy, with the GLM slightly edging
out at 69%. Their total computation time is relatively low, making them suitable for
applications where quick insights are essential.

3. Scenarios Requiring Deep Insights and Nonlinearity:
Recommended Model: Deep Learning.
Reasoning: With an accuracy of 80% and the ability to capture intricate patterns
and relationships in data, Deep Learning models can be ideal. They are particularly
effective when the dataset is large and when nonlinear relationships are suspected.

4. Balancing Accuracy and Computation Time:
Recommended Model: Decision Tree or Random Forest.
Reasoning: Both models provide a good compromise between accuracy and computa-
tional efficiency. Random Forest, being an ensemble method, can handle more complex
data patterns and offers slightly reduced variance compared to a single Decision Tree.

5. Scenarios with Limited Data or Resources:
Recommended Model: Fast Large Margin.
Reasoning: With a relatively low computation time and modest accuracy, this model
can be effective when computational resources are limited, or when a rapid prototype
is required.

While the allure of high accuracy is tempting, it is vital to consider the broader
context. Scenarios with limited computational resources, urgent time frames, or specific
data characteristics might benefit from models other than the highest accuracy performer.
It is crucial to understand the trade-offs involved and align them with practical needs for
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the effective application of machine learning in agriculture, especially in the context of
selecting microbial strains for drought mitigation.

4.4. Future Directions

The results of this study not only provide valuable insights into the performance
of various machine learning models in predicting optimal microbial strains for drought
mitigation, but also pave the way for numerous exciting avenues for future research
(Table 5).

One promising direction is the exploration of ensemble methods. These methods,
which involve combining the predictions of multiple models, have been shown to improve
accuracy and robustness in many machine learning tasks. By leveraging the strengths of
different models, ensemble methods could potentially yield more accurate and reliable
predictions in the context of microbial strain selection. Future studies could investigate
various ensemble techniques, such as bagging, boosting, and stacking, and assess their
performance in comparison to individual models [57,58].

Table 5. Future research steps and directions in machine learning for microbial selection.

Step Objective Approach

1. Expanding Data Sources Diversify and increase the robustness of
predictive models.

Incorporate data from various geographical
locations, covering different soil types, microbial
ecologies, and climatic conditions.

2. Incorporating Genomic Data Achieve a deeper understanding of
microbial strains.

Delve into the genomic data of the microbial
strains to identify genetic markers associated
with drought resistance.

3. Ensemble Learning and Hybrid Models Enhance prediction accuracy and model
robustness.

Use ensemble methods combining various
algorithms or create hybrid models blending
traditional statistical methods with machine
learning techniques.

4. Real-time Monitoring and Prediction Facilitate proactive interventions.
Develop a system with IoT devices for real-time
monitoring and use machine learning models for
impending drought stress predictions.

5. Collaboration with Microbiologists Ensure the biological viability of machine
learning predictions.

Form interdisciplinary teams with
microbiologists and soil scientists to validate the
biological viability of machine learning
recommendations.

6. Model Explainability and Interpretation Make machine learning models more
transparent and understandable.

Implement techniques from Explainable AI (XAI)
for insights into microbial strain selections.

7. Field Trials and Validation Empirically validate the efficacy of selected
microbial strains.

Conduct controlled field trials monitoring plant
health, yield, and drought resilience to validate
machine learning recommendations.

Another interesting avenue for future research is the investigation of more advanced
machine learning techniques, such as Deep Learning. Deep Learning models, which
are capable of learning complex patterns from high-dimensional data, have shown great
promise in a wide range of applications. In the context of microbial strain selection,
these models could potentially uncover intricate relationships between microbial traits,
environmental factors, and plant responses, leading to more accurate predictions [59,60].

In addition to exploring new machine learning techniques, future research could also
involve applying the models to different types of data. For instance, genomic data or soil
microbiome data could provide a wealth of information about the characteristics of different
microbial strains and their interactions with plants and the environment. By integrating
such data into the machine learning models, we could gain a deeper understanding of the
factors that influence the effectiveness of different microbial strains in mitigating drought
effects [18,22].

Moreover, future studies could also investigate the applicability of the machine learn-
ing models in different crops, soil types, and climatic conditions. This could lead to
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the development of more versatile and robust models that can cater to a wide range of
agricultural scenarios [61,62].

4.5. Limitations

While this study offers valuable insights into the application of machine learning
models for predicting optimal microbial strains for drought mitigation, it is important to
acknowledge its limitations to fully appreciate the context and scope of the findings.

Firstly, the models were trained and evaluated on data derived from two specific
studies. While these studies provided a robust dataset for the task at hand, the performance
of the models may vary when applied to different datasets. This is a common limitation in
machine learning applications, as the models’ performance is often highly dependent on
the specific characteristics of the training data. Therefore, the results of this study should
be interpreted with caution when generalizing to other datasets or contexts [63–65].

While machine learning models can make accurate predictions, they do not inherently
provide mechanistic insights into the underlying biological processes. This is a funda-
mental limitation of machine learning, as the models are primarily data-driven and do
not incorporate explicit biological knowledge. Therefore, the predictions made by the
models should be interpreted in conjunction with biological knowledge and experimental
validation. It is crucial to validate the predictions in experimental settings to confirm their
biological relevance and applicability [64,66,67].

While this study provides valuable insights into the application of machine learning
models for microbial strain selection, the limitations should be considered when interpret-
ing the results and planning future research. Despite these limitations, the study represents
a significant step forward in the integration of machine learning in agriculture, and sets the
stage for further advancements in this exciting field.

5. Conclusions

In the quest to combat drought in agriculture, this research delved into the prowess
of various machine learning models, aiming to predict efficacious microbial strains. Our
assessment criteria spanned a myriad of metrics, such as accuracy, gains, computational
duration, and training times. A salient discovery was that Gradient Boosted Trees outper-
formed other models in terms of accuracy, albeit demanding significant computational
power. This emphasizes the perpetual conundrum of balancing precision with computa-
tional viability in the realm of machine learning.

The incorporation of machine learning to discern microbial strains heralds a transfor-
mative shift from conventional methodologies, potentially elevating the efficacy of this
endeavor. Nevertheless, while zeroing in on a model, it is pivotal to weigh its predictive
precision against the computational overhead it demands.

The revelations of this research carry profound ramifications for agriculture, especially
concerning drought alleviation. Harnessing machine learning can arguably fortify the
hardiness and yield of crops amidst droughts, fortifying our steps toward a sustainable
agricultural landscape and ensuring food security.

The horizon of future inquiries might be illuminated by ensemble strategies or deep
learning nuances. Venturing into diverse data streams, such as genomic sequences or the
intricacies of the soil microbiome, might unravel deeper layers of understanding about the
pivotal factors shaping the prowess of microbial strains against drought.

To encapsulate, this endeavor accentuates machine learning’s transformative potential
in agriculture. It simultaneously heralds a call for judicious model choices, harmonizing
multiple determinants. The insights gleaned lay the bedrock for future strides in harnessing
microbial strains for drought mitigation, painting a promising picture for the agriculture
of tomorrow.
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42. Kamiński, B.; Jakubczyk, M.; Szufel, P. A Framework for Sensitivity Analysis of Decision Trees. Cent. Eur. J. Oper. Res. 2018, 26,

135–159. [CrossRef] [PubMed]
43. Yang, Y.; Morillo, I.G.; Hospedales, T.M. Deep Neural Decision Trees. In Proceedings of the 2018 ICML Workshop on Human

Interpretability in Machine Learning (WHI 2018), Stockholm, Sweden, 14 July 2018. [CrossRef]
44. Paul, A.; Mukherjee, D.P.; Das, P.; Gangopadhyay, A.; Chintha, A.R.; Kundu, S. Improved Random Forest for Classification. IEEE

Trans. Image Process. 2018, 27, 4012–4024. [CrossRef] [PubMed]
45. Schonlau, M.; Zou, R.Y. The Random Forest Algorithm for Statistical Learning. Stata J. 2020, 20, 3–29. [CrossRef]
46. Si, S.; Zhang, H.; Keerthi, S.S.; Mahajan, D.; Dhillon, I.S.; Hsieh, C.-J. Gradient Boosted Decision Trees for High Dimensional

Sparse Output. In Proceedings of the 34th International Conference on Machine Learning (ICML), Sydney, Australia, 6−11
August 2017; pp. 3182–3190.

47. Zhang, Z.; Jung, C. GBDT-MO: Gradient-Boosted Decision Trees for Multiple Outputs. IEEE Trans. Neutral Netw. Learn Syst. 2021,
32, 3156–3167. [CrossRef]

48. Murlidharan, S.; Shukla, V.K.; Chaubey, A. Application of Machine Learning in Precision Agriculture Using IoT. In Proceedings
of the 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM), London, UK, 28−30 April 2021;
pp. 34–39. [CrossRef]

https://doi.org/10.3390/cells10092428
https://doi.org/10.3390/microorganisms8122043
https://doi.org/10.3389/fbioe.2023.1189166
https://doi.org/10.3390/s21113758
https://www.ncbi.nlm.nih.gov/pubmed/34071553
https://doi.org/10.1109/ACCESS.2020.3048415
https://doi.org/10.1093/erae/jbz033
https://doi.org/10.1016/j.tim.2021.03.002
https://doi.org/10.3389/fpls.2020.01179
https://www.ncbi.nlm.nih.gov/pubmed/32983187
https://doi.org/10.3389/fpls.2021.715676
https://doi.org/10.3390/ijms231810449
https://doi.org/10.3390/agronomy13030754
https://doi.org/10.1016/B978-0-12-809633-8.20473-1
https://doi.org/10.1109/csci46756.2018.00065
https://doi.org/10.1201/9780203738535-6
https://doi.org/10.1109/LSP.2017.2789163
https://doi.org/10.1177/0049124117747306
https://doi.org/10.1109/TSP.2017.2708039
https://doi.org/10.1109/cvpr.2017.510
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1093/bib/bbw068
https://www.ncbi.nlm.nih.gov/pubmed/27473064
https://doi.org/10.1007/s10100-017-0479-6
https://www.ncbi.nlm.nih.gov/pubmed/29375266
https://doi.org/10.48550/arXiv.1806.06988
https://doi.org/10.1109/TIP.2018.2834830
https://www.ncbi.nlm.nih.gov/pubmed/29993742
https://doi.org/10.1177/1536867X20909688
https://doi.org/10.1109/TNNLS.2020.3009776
https://doi.org/10.1109/iciem51511.2021.9445312


Agriculture 2023, 13, 1622 16 of 16

49. Park, S.J.; Chae, D.K.; Bae, H.K.; Park, S.; Kim, S.W. Reinforcement Learning over Sentiment-Augmented Knowledge Graphs
towards Accurate and Explainable Recommendation. In Proceedings of the Fifteenth ACM International Conference on Web
Search and Data Mining, New York, NY, USA, 21−25 February 2022; pp. 784–793. [CrossRef]

50. Rehman, M.; Razzaq, A.; Baig, I.A.; Jabeen, J.; Tahir, M.H.N.; Ahmed, U.I.; Altaf, A.; Abbas, T. Semantics Analysis of Agricultural
Experts’ Opinions for Crop Productivity through Machine Learning. Appl. Artif. Intell. 2022, 36, 1–16. [CrossRef]

51. Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status
Estimation in Precision Agriculture: A Review. Comput. Electron. Agric. 2018, 151, 61–69. [CrossRef]

52. Yadav, N.; Alfayeed, S.M.; Wadhawan, A. Machine Learning In Agriculture: Techniques And Applications. Int. J. Eng. Appl. Sci.
Technol. 2020, 5, 118–122. [CrossRef]

53. Bragg, J.; Habli, I. What Is Acceptably Safe for Reinforcement Learning? In SAFECOMP 2018: Computer Safety, Reliability, and
Security; Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F., Eds.; Springer: Cham, Switzerland, 2018; pp. 418–430. [CrossRef]

54. Stocker, M.D.; Pachepsky, Y.A.; Hill, R.L. Prediction of E. Coli Concentrations in Agricultural Pond Waters: Application and
Comparison of Machine Learning Algorithms. Front. Artif. Intell. 2022, 4, 768650. [CrossRef] [PubMed]

55. Saleem, M.H.; Potgieter, J.; Arif, K.M. Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent
Developments. Precis. Agric. 2021, 22, 2053–2091. [CrossRef]

56. Rastrollo-Guerrero, J.L.; Gómez-Pulido, J.A.; Durán-Domínguez, A. Analyzing and Predicting Students’ Performance by Means
of Machine Learning: A Review. Appl. Sci. 2020, 10, 1042. [CrossRef]

57. Leite, D.M.C.; Lopez, J.F.; Brochet, X.; Barreto-Sanz, M.; Que, Y.A.; Resch, G.; Pena-Reyes, C. Exploration of Multiclass and One-
Class Learning Methods for Prediction of Phage-Bacteria Interaction at Strain Level. In Proceedings of the 2018 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3−6 December 2018; pp. 1818–1825. [CrossRef]

58. Tang, G.; Shi, J.; Wu, W.; Yue, X.; Zhang, W. Sequence-Based Bacterial Small RNAs Prediction Using Ensemble Learning Strategies.
BMC Bioinform. 2018, 19, 13–23. [CrossRef]
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