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Abstract

The visual analysis of microscopic images is often used for soil bacteria recognition in micro-

biology. Such task can be automated with the aid of machine learning and digital image pro-

cessing techniques. The best results for soil microorganism identification usually rely on

extracting features based on color. However, accommodating in the latter an extra impact of

lighting conditions or sample’s preparation on classification accuracy is often omitted. In

contrast, this research examines features which are insensitive to the above two factors by

focusing rather on bacteria shape and their specific group dispersion. In doing so, the calcu-

lation of layout features resorts to k-means and mean shift methods. Additionally, the depen-

dencies between specific distances determined from bacteria cells and the curvature of

interpolated bacteria boundary are computed to extract vital geometric shape information.

The proposed bacteria recognition tool involves testing four different classification methods

for which the parameters are iteratively adjusted. The results obtained here for five selected

soil bacteria genera: Enterobacter, Rhizobium, Pantoea, Bradyrhizobium and Pseudomo-

nas reach 85.14% classification accuracy upon combining both geometric and dispersion

features. The latter forms a promising result as a substitutive tool for color-based feature

classification.

Introduction

Identification of bacteria can be realized with the use of many molecular techniques, including

ribotyping, repetitive extragenic palindromic PCR (Rep-PCR), denaturing gradient gel electro-

phoresis (DGGE), terminal (T)-restriction fragment length polymorphism (T-RFLP), multilo-

cus sequence typing (MLST) and whole-genome sequencing (WGS) [1]. MLST uses DNA

sequencing of internal fragments of the housekeeping gene loci (seven in number) of bacterial

strains to characterize alleles [2]. In practice, a common stance for bacteria identification is

based on sequence analysis of 16 SrRNA gene [3, 4] and MLST unveiling the same intraspecific

genetic structure patterns as genomes [5]. In bacteria recognition process, the morphological
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features can also be considered while analyzing the microscopic images. However, sometimes

it is hard to distinguish between different bacteria species due to their morphological similari-

ties within a genera [6]. The image-based identification can be tedious and laborious.

The aim of this research is to create a system that automates the process of microscopic

image classification. Incorporating the computerized approach facilitates the identification

process replacing or supporting human expertise and eyesight assessment with the modern

computer vision image processing techniques. Machine learning methods used in this paper

have already been applied to solve pattern recognition, prediction and classification problems

in various fields of biology [7] and, in particular, to identify the microorganisms [8]. Some bac-

teria can be easily discerned from others due to their specific morphological features e.g. Myco-
bacterium tuberculosis [9] and Escherichia Coli [10] both having characteristic shapes. Here a

fast and robust recognition scheme is in demand as these bacteria may inflict serious human

illnesses. Some works perform classification not on the genera or species level but defining

each class as a shape type [11]. The features relying on shape, texture or on pixel-based mea-

sures are applied in bacteria classification [12–15]. In this paper, the classification task is

accomplished on the genera level via differentiating microscopic images of five selected soil

bacteria genera: Enterobacter, Rhizobium, Pantoea, Bradyrhizobium and Pseudomonas (see

Fig 1) grown in specific conditions on selected medium. Some of these bacteria genera have a

positive impact on plant growth while the others are pathogenic. For this reason it is important

to accurately classify their character [16, 17].

Identification of microorganisms with machine learning methods is widely applied for rec-

ognition of pathogens causing human infections (see e.g. [12]). In contrast, the topic of soil

microorganism classification has not been so-far extensively investigated. In case of image-

based soil microorganism identification discussed in [18], the analysis of color features used

for bacteria recognition yields up to 97% of classification accuracy (ACC). In the latter work,

the goal was to create a system enabling automatic recognition of samples that are prepro-

cessed by the microbiologists. The introduced chemical reactions result in the color change of

samples depending on the species of the microorganism which ultimately facilitates the effi-

ciency of the classifier in achieving more accurate results.

In our research a different approach is adopted. The microscopic images can be taken with

various microscopes and under different lighting conditions. In addition, the photographed

samples can also be processed by the microbiologists upon administering a contrast or initiat-

ing a chemical reaction. Furthermore, the analyzed samples are usually colored with dyes to

improve visibility of the objects examined under the microscope. In order not to rely on these

factors, the different types of features based on bacteria geometry and their group dispersion

are considered in this work which yields an alternative for the color-based traits classification.

Developing such a set of features can help to create an automatic program that performs an

accurate classification on both raw images and on those subjected to chemical reactions. The

computations are performed here on images of bacteria samples that are not earlier processed

by the microbiologists. In the prior research, the combination of geometric and texture fea-

tures [19] calculated on the same image dataset resulted in up to 97% classification accuracy.

However, in this research features based on texture are excluded as they rely on luminance (i.e.

pixels intensity values which in turn may depend on lighting conditions). Instead, only features

related directly to the geometry and dispersion of the analyzed objects are considered. The

highest classification accuracy obtained here for such a set of features equals 85.14%. The pres-

ent findings suggest that alternative feature types have the potential to supplant chrominance

and luminance features in the realm of bacterial classification. Such an approach would enable

classification with comparable precision for images captured under diverse illumination con-

ditions, amalgamating preprocessed and raw images, as the outcome remains impervious to
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color and light influences. Notably, the investigated set of microscopic images demonstrated

an accuracy of 95.6% for exemplary color features, indicating a remaining deviation of 10% in

classification accuracy. Nonetheless, given the multifaceted nature of this issue, further explo-

ration of various factors is warranted, and the classification results are anticipated to be

Fig 1. Examples of bacteria images: (a) Enterobacter, (b) Rhizobium, (c) Pantoea, (d) Bradyrhizobium and (e) Pseudomonas. For more pictures see

URL link: bit.ly/3TwOgFB.

https://doi.org/10.1371/journal.pone.0293362.g001
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enhanced upon adjustment of pertinent variables as explicated in the ensuing discussion

section.

Material

Strains X58AD (Pantoea sp), Pi72ED (Enterobacter sp), Ps118AA (Pseudomonas sp) were

grown for 48 hours in 26 Celsius degrees on Plate Count Agar (BTL P-0037) medium. E77AO

(Rhizobium) bacteria strain and a strain that was not present in Symbio-Bank (Bradyrhizo-
bium) were grown on Yeast Mannitol Agar medium for 96 hours in 26 Celsius degrees. Bacte-

ria of each strain were collected from a single colony and transferred on the surface of glass

plate. In the next step, a drop of sterile water was added and mixed with the bacteria. The

resulting smear was covered with microscope slide. The analyzed images were taken with a

Nikon 80i microscope.

Methods

Work-flow scheme

The work-flow scheme applied in this work consists of the following steps:

1. Segmentation of the Region of Interest.

2. Feature Calculation.

3. Feature Selection.

4. Class Recognition.

Segmentation of the Region of Interest

The aim of image segmentation is to separate the Region of Interest (ROI) from the back-

ground by creating a binary mask. In our case, ROI is the area where bacteria are located and

this subarea of the mask is set to be white, while the background remains black. At first the

image is converted to grayscale, then the Otsu method [18] combined with open and close

morphological operations [20] is applied. These computations are performed with MATLAB

functions: rgb2gray, multithresh, imbinarize, imfill and bwareaopen.

Calculation of geometric features

The shape of bacteria depends e.g. on their genera and growth phase. The geometric features

are measured here on typical bacteria instances selected from each microscopic image and

applied later for the classification purposes.

Dependencies between vectors. Let Qm ¼ fqkg
m
k¼0

be a set of m + 1 planar points qk = (xk,
yk) on a single bacteria’s boundary in 2D-Euclidean space. These points are set in a clockwise

order according to the following procedure. Recall that in MATLAB function atan2ð~y; ~xÞ calcu-

lates the angle between x-axis and a line joining point ~p ¼ ð~x; ~yÞ with the origin of the coordi-

nate system i.e. a point (0, 0). Upon shifting the origin to the point c = (xc, yc) where

xc ¼ ð1=ðmþ 1ÞÞ
Pm

k¼0
xk and yc ¼ ð1=ðmþ 1ÞÞ

Pm
k¼0

yk we applied here atan2(xk − xc, yk − yc)
—note that we also flipped variables in atan2 to guarantee a clockwise order in Qm. The points

are thus indexed in ascending order based on the atan2 values. We pick now a point qmd 2 Qm

whose Euclidean distance towards the point c is the smallest and then reorder points. If we have

a sequence of elements q0, q2, . . ., qm and we choose one of them as qmd it becomes the first ele-

ment of the new sequence ~Qm. Then all elements following qmd are shifted after qmd, and finally
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we append the elements that preceded qmd at the end of the sequence (so if we had q0, q1, q2, q3,

q4, q5, q6 and qmd = q3 the new order reads as q3, q4, q5, q6, q0, q1, q2). Next the set ~Qm is reduced

to Q̂n ¼ fq̂ig
n
i¼0

upon picking n + 1 points. In this work n + 1 = 10 is arbitrarily selected for all

bacteria. The points forming Q̂n are selected applying the following formula fix(linspace(0, m, n
+ 2)). Employing these functions provides a guarantee that the distances between the selected

points are equal in terms of their indices, while minimizing the differences between these dis-

tances. Assume m is equal to 108 and n + 2 to 11, applying the linspace function results in the fol-

lowing values: 0, 10.8, 21.6, 32.4, 43.2, 54, 64.8, 75.6, 86.4, 97.2, 108. After processing by the fix
function and omitting the first element, we obtain the indices of the points in ~Qm—10, 21, 32,

43, 54, 64, 75, 86, 97, 108, which form the set of points Q̂n. In the next step we calculate distances

between each q̂i and q̂iþ1 (and the distance between q̂n and q̂0), and between each q̂i and c.
The latter approach is illustrated in Fig 2. Note that no matter how the figure is rotated we

always pick qmd placed in the corresponding similar position on bacteria’s boundary resulting

in a similar order of vector elements (starting with its qmd).

In addition, for a selected k-th bacteria based on its boundary points Q̂ðkÞ
n , a set of n + 1 trian-

gles fD
ðkÞ
i g

n
i¼0

is formed each determined by the vertices fq̂ðkÞi ; q̂
ðkÞ
iþ1; cðkÞg (the last triangle D

ðkÞ
n is

defined by fq̂ðkÞn ; q̂
ðkÞ
0 ; cðkÞg)—see Fig 2. Recalling that rðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼0
ðxi � yiÞ

2

q

defines the

Euclidean distance for x; y 2 En, define now for each Q̂ðkÞ
n (with~vk;i ¼ q̂ðkÞi � cðkÞ,~rk;i ¼ cðkÞ � q̂ðkÞi

and~wk;i ¼ q̂ðkÞi � q̂ðkÞiþ1, for i = 0, . . ., n; note~wk;n ¼ q̂ðkÞ0 � q̂ðkÞn ) the following measures (see Fig 2):

Fig 2. Distances and angles on exemplary shape, and exemplary rotations of a shape with applied method. Vectors:~ak—dark gray lines,~bk—red lines,

~ak—dark gray angles,~bk—light gray angles.

https://doi.org/10.1371/journal.pone.0293362.g002

PLOS ONE Computerized identification of the selected soil bacteria

PLOS ONE | https://doi.org/10.1371/journal.pone.0293362 October 27, 2023 5 / 19

https://doi.org/10.1371/journal.pone.0293362.g002
https://doi.org/10.1371/journal.pone.0293362


• ~ak—vector of n + 1 distances rðq̂ðkÞi ; cðkÞÞ,

• ~bk—vector of n + 1 distances rðq̂ðkÞi ; q̂
ðkÞ
iþ1Þ (with bk;n ¼ rðq̂ðkÞn ; q̂

ðkÞ
0 )),

• ~ak—vector of of n + 1 angles arccosð~vk;iþ1;~vk;iÞ (with ak;n ¼ arccosð~vk;0;~vk;nÞ),

• ~bk—vector of n + 1 angles arccosð~rk;iþ1; ~wk;iÞ (with bk;n ¼ arccosð~rk;0; ~wk;nÞ).

In one microscopic image there might be hundreds of bacteria instances. Some of them are

grouped together with overlaps which results in being identified as a single object once Region

of Interest mask is applied. Another impeding factor comes from the fact that bacteria image

can be taken at various stage of growth potentially related to its varying shape. Burying in

mind the above concerns, only several b bacteria instances from the ROI mask are considered.

These bacteria are selected based on the area value of the objects. All objects are sorted in

ascending order and b items are selected with the area value closest to the median of all area

values of the objects in a single image. Such approach ensures selection of objects representing

single bacteria cells rather than groups of overlapped cells. In this research, for the calculation

of features {1} and {2} we set b = 50 and for {3}, {4}, {5} and {6} b = 10 (for enumeration of fea-

tures see subsection—All geometric features).

Each of the selected b bacteria on a given image represented by vector measures

(Fb ¼ fFkg
b
k¼1

where Fk ¼ ð~ak;
~bk;~ak;

~bkÞ 2 R
4ðnþ1Þ

) is compared with the exemplary bacteria

measure selected by experts which is represented by Fe ¼ ð~ae;
~be;~ae;

~beÞ 2 R
4ðnþ1Þ.

To illustrate the vector comparison procedure and to prove its credibility on more distinc-

tive shapes an example of shape comparison between Fbs ¼ ð~abs;
~bbs;~abs;

~bbsÞ 2 R
4ðnþ1Þ with

other vectors is presented (see Fig 3). Fbs is a set of vectors of values calculated for bacteria-

shaped object. This object is an irregular oval shape that represents a bacteria cell. Fbs is com-

pared with: Fb2—vectors calculated for bacteria-shaped object with double magnified size,

Fh—vectors calculated for horseshoe shape, Fr—vectors calculated for a round shape and lastly,

Fo—vectors calculated for oval shape. All shapes in question are artificially created with a slight

irregularity applied. The latter corresponds to the objects selected by the ROI mask as they are

also irregular and not the symmetric round or oval shapes.

For a given bacteria-like shape represented by Fbs we calculate the Pearson coefficient value

[21] for all corresponding pairs of vectors in (Fbs, Fn), where Fn 2 {Fbs, Fb2, Fh, Fr, Fo}, to verify

how its value corresponds to the object shape Fig 3. Table 1 shows the correlation values

between bacteria-shaped object and the same object resized, whereas Table 2 reports on corre-

lation between bacteria-shaped object and other shapes. These calculations are conducted on

200 × 200 pixel images rotated by angles 0˚, 45˚, 90˚ and 135˚ in a counterclockwise direction

around the center of the image. In this experiment, all Fn are calculated for each of the four

selected angles yielding: Fn0� ; Fn45� ; Fn90� ; Fn135� (e.g. for round shape we have

Fr0� ; Fr45� ; Fr90� ; Fr135� ). Note that Fn is equal to Fn0� . Calculated data show significant impact of

the object shape on the coefficient value for vectors of a and α, and that coefficient value is

almost independent from the object size and rotation.

Despite the fact that Pearson coefficient properly reflects the relationship between shapes

(expressed in vector forms and compared respectively), in the case of bacteria comparison, bet-

ter classification results can be obtained upon replacing this coefficient with a slightly different

approach presented in the following example.

To compare two vectors (e.g. representing some abstract feature), assume that the similarity

between two vectors w1 = [1, 2, 3, 4] and w0 = [4, 1, 2, 3] is to be established. In doing so, the

normalization of both vectors renders w1n = [0, 0.33, 0.66, 1] and w0n = [1, 0, 0.33, 0.66]. Then
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three more vectors are created as they correspond to different positions of the object (on

which w1 was calculated): w2n = [1, 0, 0.33, 0.66], w3n = [0.66, 1, 0, 0.33] and w4n = [0.33, 0.66,

1, 0]. In the next step, we calculate mean squared error [22] between each wi (for i = 1, . . ., 4)

and w0 which is equal to: 1.33, 0, 1.33 and 1.78, respectively. Then the smallest value is chosen,

which here reads as 0 meaning that both w0n and win are equal.

Vector w1 can represent a certain vector calculated on currently analyzed shape (e.g. an
from Fn) and w0 stands for a corresponding vector calculated on a bacteria-like shape (e.g. abs

Fig 3. Shapes that were compared with a bacteria-like shape.

https://doi.org/10.1371/journal.pone.0293362.g003

Table 1. Table presents Pearson coefficient between vectors calculated on bacteria-shaped object Fbs and the same object rotated (Fbs0� ;Fbs45� ;Fbs90� ;Fbs135� ) and Fbs
with vectors calculated for bacteria-shaped object twice magnified rotated (Fb20� ; Fb245� ; Fb290� ; Fb2135� ).

SV Fbs0� Fbs45� Fbs90� Fbs135� Fb20� Fb245� Fb290� Fb2135�

~a 1.00 0.98 1.00 0.98 0.99 0.98 0.99 0.98

~b 1.00 0.30 1.00 0.30 0.03 0.36 0.03 0.32

~a 1.00 0.97 1.00 0.97 0.99 0.97 0.99 0.97

~b 1.00 0.92 1.00 0.92 0.97 0.93 0.97 0.93

SV stands here for the Set of Vectors which is a set that consists of vectors corresponding to~a,~b,~a and~b that are compared with the corresponding vectors in Fbs with

the Pearson Coefficient.

https://doi.org/10.1371/journal.pone.0293362.t001
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from Fbs). Here all the shapes from Fig 3 are compared with the bacteria-like shape. Vectors w1

and w0 can also represent a vector calculated on currently analyzed bacteria (e.g. ak from Fk)
and on the exemplary one (e.g. ae from Fe). These dependencies are calculated for every

selected bacteria in the analyzed image.

Subsequently, the minimum mean square error value is computed for specific vectors cor-

responding to each of the b chosen bacteria in the image, across all four vectors. The corre-

sponding results are denoted by MSE~amin
k ;MSE~bmin

k ;MSE~amin
k ;MSE~bmin

k , where k = 1, 2, . . ., b.

Then respective mean values of the minimum values for vectors~a;~b;~a;~b are calculated for all

the selected bacteria from an analyzed image rendering four features based on geometry:

MSE~amin ;MSE~bmin ;MSE~amin ;MSE~bmin .

Curvature and arc-length. Having selected Q̂n points (described in previous subsection)

one can estimate the object’s boundary with the aid of interpolation [23]. In order to define

any interpolant γ which graph forms a closed curve the set Q̂n is augmented with an extra

point q̂nþ1 ¼ q̂0. The missing interpolation knots ft̂ ig
nþ1

i¼0
for which q̂i ¼ gðt̂ iÞ are estimated

from exponential parameterization [24, 25]:

t̂ i ¼ 0; t̂ iþ1 ¼ t̂ i þ kqiþ1 � qik
l
; i ¼ 0; � � � ; n

with λ 2 [0, 1]. Here a special case of λ = 0.5 (the so-called centripetal parameterization) is

used. Next a cubic spline g ¼ ĝcs with clamped boundary conditions [26] is applied (a complete

spline). The latter requires an a priori information on ĝ 0ðt̂0Þ ¼ v0 and ĝ 0ðt̂ nþ1Þ ¼ vnþ1 which is

originally unavailable. In order to extract somehow v0 and vn+1 an approach based on Modified

Hermite scheme is used [27], where both v0 and vn+1 are estimated from Lagrange Cubics ĝC
0
,

ĝCn� 2
fitting fq̂0; q̂1; q̂2; q̂3g and fq̂n� 2; q̂n� 1; q̂n; q̂nþ1g yielding v0 ¼ ĝ

C0
0
ðt̂0Þ and

vnþ1 ¼ ĝ
C0
n� 2
ðt̂ nþ1Þ, respectively.

Having constructed a complete spline g ¼ ĝcs one can compute its curvature:

kðtÞ ¼
k~T 0ðtÞk
k~r 0ðtÞk

;

where~rðtÞ ¼ _gðtÞ is a tangent vector to γ at t with its normalized vector ~TðtÞ ¼~rðtÞ=k~rðtÞk or

arc-length of the curve γ on interval [a, t]:

s ¼
Z t

a
k~r 0ðuÞk du:

Table 2. Table presents pearson coefficient between vectors calculated on bacteria-shaped object Fbs with vectors calculated for horseshoe Fh, round Fr and oval Fo
shapes rotated by 0˚, 45˚, 90˚ and 135˚.

SV Fh0� Fh45� Fh90� Fh135� Fr0� Fr45� Fr90� Fr135� Fo0� Fo45� Fo90� Fo135�

~a 0.25 0.23 0.25 0.23 0.51 0.56 0.51 0.56 0.97 0.98 0.97 0.98

~b 0.28 0.33 0.28 0.33 0.03 0.05 0.03 0.05 0.29 0.23 0.29 0.23

~a 0.07 0.16 0.07 0.16 0.46 0.60 0.46 0.60 0.91 0.92 0.91 0.92

~b 0.19 0.19 0.19 0.19 0.20 0.35 0.20 0.35 0.88 0.90 0.88 0.90

SV stands here for the Set of Vectors which is a set that consists of vectors corresponding to~a,~b,~a and~b that are compared with the corresponding vectors in Fbs with

the Pearson Coefficient.

https://doi.org/10.1371/journal.pone.0293362.t002
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All geometric features. The final set of features based on size and geometry of the selected

objects reads as:

• {1} Mean bacteria arc-length—which is a sum of all n + 1 arc-lengths representing the perim-

eters of all selected bacteria divided by b,

• {2} Mean curvature of b bacteria in one image—a sum of all integrals of a curvature κ(t) on

each of the [ti, ti+1] 3 t intervals calculated for each bacteria where i = 0, 1, . . ., n. Then the

sum of integrals is divided by b,

• {3} Minimal mean square error first distance—MSE~amin ¼ ð1=bÞ
Pb

k¼1
MSE~amin

k ,

• {4} Minimal mean square error second distance—MSE~bmin ¼ ð1=bÞ
Pb

k¼1
MSE~bmin

k ,

• {5} Minimal mean square error first angle—MSE~amin ¼ ð1=bÞ
Pb

k¼1
MSE~amin

k ,

• {6} Minimal mean square error second angle—MSE~bmin ¼ ð1=bÞ
Pb

k¼1
MSE~bmin

k ,

• {7} Median of the object area in the image,

• {8} Percent of the bacteria area in the image,

• {9} Amount of objects in the image—calculated sum of objects within the ROI mask,

• {10} Amount of bacteria in the image—calculated sum of the areas of objects within a ROI

mask divided by the median of the object size in the current image.

Calculation of dispersion features

The dataset analyzed in this research consists of the images with bacteria monocultures. Each

soil bacteria genera has a different colony dispersion. For some genera the bacteria cells are

located close to each other in a non-uniform fashion, whereas the others are equally distrib-

uted. This section outlines the possible tools which measure the impact of such irregularities

on classification in terms of mean shift [28], k-means [29] and regression [30].

Mean shift. Mean shift [28] is a scheme that allocates points through an iterative proce-

dure to their average in a specified neighborhood (the local maxima of a density function)

[31]. The output of this method consists of sets of points assigned to disjoint clusters deter-

mined by the distribution of input points. The resulting number of clusters in a clustering

algorithm is determined by the algorithm itself. However, there are several input parameters

that can be adjusted to customize the clustering process. These parameters include the window

size, the distance metric used to evaluate the proximity of points to the cluster center and the

stopping criteria for the algorithm. The mean shift algorithm flowchart is illustrated in Fig 4.

It is assumed here that the input data points of the mean shift algorithm are the centroids of

the objects on the ROI mask captured with props MATLAB function. The generated features

are the numbers of clusters to which the points were attached applying different values of r
which is the radius of the window. The implementation of mean shift algorithm applied in this

research can be found in MathWorks [32].

K-means. K-means [29] is a method that assigns points into k clusters. The algorithm is

an iterative procedure of calculating distances between points and centroids, and shifting the

centroids to new locations. The value of k is set arbitrarily. The flowchart of this algorithm is

presented in Fig 5.

In order to determine features based on dispersion k-means method is firstly applied to clus-

ter bacteria centroids. The latter incorporates their location in (x, y) coordinate system or both
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the Cartesian location combined with the area of the bacteria cell represented by (x, y, s).
Assume the points Pzj

¼ fpig
zj
i¼0 are given, where zj + 1 defines the amount of points associated

with the centroid c. Then a linear regression line is fitted to all points from Pzj
. Let Qzj

¼

fqig
zj
i¼0 be the points on the fitted linear regression line such that qi ¼ ðxqi ; yqiÞ and each xqi ¼ xi

Fig 4. Flowchart of the mean shift algorithm.

https://doi.org/10.1371/journal.pone.0293362.g004

Fig 5. Flowchart of the K-means algorithm.

https://doi.org/10.1371/journal.pone.0293362.g005
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for xi being first coordinate of the point pi 2 Pzj
. Next �dj ¼ ð1=ðzj þ 1ÞÞ

Pzj
i¼0 kyi � yqik, which

is the mean distance between each of the corresponding points pi and qi for j’th centroid, is cal-

culated. Note that �dj can also be weighted by the values of the normalized vector of bacteria sur-

face areas si computed as �dj ¼ ð1=
Pzj

i¼0 siÞ
Pzj

i¼0 kyi � yqiksi. Such procedure is repeated for

each of the k clusters. The resulting sum �D ¼
Pk

j¼1
�dj becomes the feature value for currently

analyzed image.

To provide a clear example, consider two sets of m + 1 = 15 points. The first set is composed

of points grouped into three subsets, while the second set contains evenly spaced samples. The

points in both sets are attached to k = 3 clusters by k-means algorithm. Next, one calculates the

values of �D for both datasets as specified in the preceding paragraph. The computed values of

�D for images from Fig 6 are equal to �D ¼ 68 for Fig 6a and �D ¼ 1058 for Fig 6b. A marked

discrepancy is observed in the results depending on the level of data dispersion. Fig 7 illustrates

the latter used for the exemplary microscopic images.

All dispersion features. The final set of features based on the size and geometry consists

of:

• {11-18} Mean shift—for different r values equal to = 25, 50, 75, 100, 125, 150, 175, 200,

respectively,

• {19-27} K-means and regression—for (x, y) with k = 2, 6, 10, for (x, y, s) with k = 2, 6, 10 and

for (x, y) with k = 2, 6, 10 weighted.

Calculation of luminance and chrominance features

In this work, the classification results obtained applying features based on geometry and dis-

persion is compared with an accuracy rendered by features based on chrominance and lumi-

nance. In doing so, statistical measures of the pixel values, i.e. colors defined by RGB (red,

green and blue) color space on the whole image or only on the area covered with the ROI

mask are computed. Such features are calculated either on the image converted to grayscale or

within a selected color channel. The four statistical measures employed here to analyze the

Fig 6. K-means algorithm and linear regression image with m + 1 = 15 for k = 3 put in sets (a) and evenly spaced (b).

https://doi.org/10.1371/journal.pone.0293362.g006

PLOS ONE Computerized identification of the selected soil bacteria

PLOS ONE | https://doi.org/10.1371/journal.pone.0293362 October 27, 2023 11 / 19

https://doi.org/10.1371/journal.pone.0293362.g006
https://doi.org/10.1371/journal.pone.0293362


data are: variance [33], mean, kurtosis and skewness [34]. The resulting set of features based

on color consists of:

• {28-35} Variance—calculated on mask {28}, on whole image {29}, on whole image red {30},

green {31}, blue channel {32}, calculated on mask for red {33}, green {34}, blue channel {35},

• {36-43} Mean—calculated on mask {36}, on whole image {37}, on whole image red {38},

green {39}, blue channel {40}, calculated on mask for red {41}, green {42}, blue channel {43},

• {44-51} Kurtosis—calculated on whole image {44}, on the mask {45}, on whole image red

{46}, green {47}, blue channel {48}, on the mask for red {49}, green {50}, blue channel {51},

• {52-59} Skewness—calculated on whole image {52}, on the mask {53}, on whole image red

{54}, green {55}, blue channel {56}, on the mask for red {57}, green {58}, blue channel {59}.

Feature selection

Noticeably, not all calculated features are appropriate for the classification. Some of them are

not highly correlated with the affiliation to the class or their correlation with other features is

too high which might cause redundancy. Such features should not be considered in the stage

of class recognition. The feature selection methods solve this problem by picking appropriate

features. In this work, we decided to verify the results given by the following methods:

• Fast Correlation Based Filter (FCBF) [35],

• Sparse Multinomial Logistic Regression with Bayesian Regularization (SBMLR) [36],

• Correlation-based Feature Selection (CFS) [37].

Class recognition

Class recognition methods are used here to assign input images to certain classes representing

different bacteria genera. These methods are trained on the training set and their classification

Fig 7. K-means algorithm and linear regression for microscopic image of Rhizobium (a) and Enterobacter (b).

https://doi.org/10.1371/journal.pone.0293362.g007
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performance is measured upon applying the testing set. Such sets contain selected features cal-

culated for each of the images. Class recognition methods considered here include:

• Support Vector Machine (SVM) [38],

• Random Forest (RF) [39],

• K-Nearest Neighbors (KNN) [40],

• Multi-Layer Perceptron (MLP) [41].

These methods representing classical machine learning techniques rely on admitting fea-

tures a priori determined by hand. Such class recognition methods continue to be widely used

across a diverse range of applications [42]. In particular, these AI tools are also studied in the

context of soil microorganism classification with high accuracy results reported [18].

Random forest. Random forest [39] is a group learning method whose task is to generate

a set of models—trees, and then to classify the tested object into one of the classes taking into

consideration the results from individual models. The trees are built based on the features

table with known class assignment (supervised learning). Each node of the tree has conditions

for numeric or non-numeric data. Satisfying these conditions determines object affiliation to

one of the classes by the current model. In order to create a decision tree for RF (based on a

table of features) one firstly randomly selects a subset of samples (table rows) with repetitions

and places them into a so-called bootstrap dataset (it has as many rows as the input table of fea-

tures) [43]. Having created the new dataset we draw from it x features (table columns) and ver-

ify which one will be the best for building the model (correctly separates the samples). The

decision on which of the x features is to be used at a given tree node is made on the basis of

methods such as e.g. Gini Impurity or Entropy [43]. The same measures allow us to set a

threshold for condition concerning numeric data for a given feature. For the classification pur-

poses hundreds of trees are generated. Upon creation of n trees one verifies to which class a

new instance is assigned by each of the models. The final decision on the classification is made

according to the majority voting rule. The effectiveness of this method is examined by compar-

ing the achieved affiliation to a class by means of the algorithm with the actual instance assign-

ment. One can arbitrarily select the value of n, however, with n increasing, the computational

complexity of the algorithm explodes, resulting in a longer computation time. In this work the

TreeBagger MATLAB function was applied.

Results

The dataset considered here [44] consists of 128 microscopic images of soil bacteria from the

five selected genera: Enterobacter—22 images, Rhizobium—25 images, Pantoea—26 images,

Bradyrhizobium—34 images and Pseudomonas—21 images. These images have not been pre-

processed either by the microbiologists (no chemical reactions conducted) or by any comput-

erized system. In the experimental section the concept of cross validation [45] is applied. More

specifically, 10% ratio cross validation is used, in which the set of images is randomly shuffled

and divided into ten subsets. Next, nine of these sets are selected to form the training set on

which our model learns how to distinguish input objects among different classes. The remain-

ing set (called the testing set) is used to verify how good the result of classification is by calcu-

lating its accuracy. The model accuracy represents the amount of correctly classified bacteria

images divided by the amount of the whole set of images (in the testing set). Then another of

the ten sets becomes the testing set so that we have ten iterations (ten different training and

testing sets) and calculate the mean accuracy value of ten iterations. The tables in this section

display the mean accuracy resulting from 50 iterations of 10% cross-validation.
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The final results include calculations based on iteratively selected parameters of class recog-

nition methods which are: Support Vector Machine (with default parameters in fitcsvm
MATLAB function), Random Forest with 200 trees, K-Nearest Neighbors with k = 1 and

Multi-Layer Perceptron with network topology 15 − 15 − 15 trained with backpropagation

algorithm based on gradient descent. The parameters were selected to maximize the ACC.

The accuracy for the whole set of features consisting of geometry and dispersion traits

shown in Table 3 reached 85.14% for Random Forest for the whole set of five different bacteria

genera. Applying feature selection methods does not increase the achieved result. The results

for four different bacteria genera presented in Table 4 are also the highest for Random Forest

ranging from 81.7% to 91.6%.

Table 5 presents accuracy for different sets and subsets of features. Features based on dis-

persion obtained the best accuracy of 63.72% for KNN, whereas features based on geometry

reached 82.59% for Random Forest. Combining these sets increases the result by 2.55

Table 3. The accuracy obtained with different feature selection and classification methods performed on features based on geometry and dispersion for the five bac-

teria genera.

FSM SVM RF (n = 200) KNN (k = 1) MLP Selected features

None 78.3438 85.1406 80.5938 50.9375 {1-27}

FCBF 75.0312 82.2656 79.0469 63.5 {7, 11, 2, 5, 8}

SBMLR 40.8906 36.2344 36.2344 28.1094 {1}

CFS 78.3906 83.875 79.8594 60.1719 {1, 2, 5-7, 10, 11, 14}

FSM stands here for the Feature Selection Method.

https://doi.org/10.1371/journal.pone.0293362.t003

Table 4. The accuracy computed with different classification methods performed on the whole set of features based on geometry and dispersion for four selected

bacteria genera (subsets of five bacteria genera).

Selected bacteria genera SVM RF (n = 200) KNN (k = 1) MLP

1, 2, 3, 4 81.7944 86.2243 85.9252 58.8785

2, 3, 4, 5 76.1132 81.6792 80.3208 54.9057

3, 4, 5, 1 75.8641 84.1748 78.6408 51.9223

4, 5, 1, 2 88.3922 88.4314 86.8235 64.8627

5, 1, 2, 3 86.0638 91.5532 87.8298 69.617

1, 2, 3, 4 and 5 stand for the following bacteria genera respectively: Enterobacter, Rhizobium, Pantoea, Bradyrhizobium and Pseudomonas.

https://doi.org/10.1371/journal.pone.0293362.t004

Table 5. The accuracy obtained with different classification methods performed on different sets of features based on color, geometry and dispersion (and their

subsets).

Set of features based on. . . SVM RF (n = 200) KNN (k = 1) MLP

geometry and dispersion {1-27} 78.3438 85.1406 80.5938 50.9375

geometry {1-10} 74.7969 82.5938 70.9062 53.0312

vectors (from geometry) {3-6} 47.5469 48.5469 41.9844 32.0625

dispersion {11-27} 60.4531 63.4219 63.7188 42.5312

k-means (from dispersion) {19-27} 39.8281 46.8594 43.7188 24.7976

mean shift (from dispersion) {11-18} 53.7188 63.9375 63.2812 49.9219

color {28-59} 86.2188 94.2969 95.5938 88.3906

color, geometry and dispersion {1-59} 89.7969 94.8281 91.2031 75.4688

https://doi.org/10.1371/journal.pone.0293362.t005
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percentage points and amounts to 85.14% for Random Forest. One can also analyze the results

of the selected subsets of features based on dispersion and geometry. As an example, features

extracted based on mean shift yields up to 63.94% accuracy, whereas features based on k-

means render 46.86%. Applying features based on vectors reached only 46.86% accuracy; how-

ever, one of them—feature number 5—is accepted by both FCBF and CFS feature selection

methods which is shown in Table 3 what proves its significant impact on increasing the classi-

fication accuracy.

The features calculated with k-means may seem insignificant. For this reason the classifica-

tion results are presented depending on the amount of bacteria analyzed on a single image

based on their area value. For each of the calculations, as shown in Table 6, a different quantile

value is selected which means that analyzed bacteria are ones which area exceeds or is equal to

that quantile area value in a single image. The 60 features were calculated for k-means for each

of the quantiles: 0, 0.2, 0.4 and 0.6. For example for quantile equal to 0.2 the calculated features

are: for k = 1, . . ., 20 and 2 dimensional vector for k-means, 2 dimensional vector for k-means

with weighted variance and 3 dimensional vector for k-means—yielding 60 features for this

quantile. The highest results are reached for the quantile equal to 0.4 amounting to 61.8%. It is

remarked here that extending the final set of features by these 60 k-means features does not

improve the final result. For that sheer reason only nine previously calculated features based

on k-means are chosen.

In this research the highest classification accuracy for a set of geometry and dispersion fea-

tures yields 85.14%. In previous work [19], based on the same image data set, the accuracy

obtained amounts to 97%. The latter analyses different set of features, involving geometric and

texture characteristics. The texture features rely on luminance and chrominance, which may

artificially improve the accuracy of the results. For example, this may occur when microscopic

images from each genera are taken under different lighting conditions. Thus, the obtained

accuracy 85.14% forms a promising result as the examined features are not based on color

information.

Discussion

The classification based on extracting features from bacteria geometry and dispersion yields a

promising 85.14% ACC. The latter is reached for the Random Forest classifier to identify five

selected soil bacteria genera. The experiments conducted on features based on geometry and

dispersion separately rendered 82.59% in case of Random Forest and 63.72% for K-Nearest

Neighbors. These results illustrate that applying a proper set of features with no color traits

enables classification of soil bacteria. The latter permits to bypass the impact of lighting condi-

tions and coloring of samples on classification. In contrast the geometry and dispersion based

Table 6. The accuracy with different classification methods for the five bacteria genera performed on features based on k-means and regression. The set consists of

60 features, for k = 1, . . ., 20 and 2 dimensional vector for k-means, 2 dimensional vector for k-means with weighted variance and 3 dimensional vector for k-means.

Quantile SVM RF (n = 200) KNN (k = 1) MLP

0 48.0469 58.9062 48.2031 28.2031

0.2 45.7812 60.625 41.875 26.5625

0.4 50.8594 61.7969 44.5312 26.0938

0.6 40 50.3125 36.6406 23.5938

The value in Quantile column informs that the bacteria were taken into account if their area value was greater then certain quantile of area value of the bacteria on a

given image.

https://doi.org/10.1371/journal.pone.0293362.t006
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classification is insensitive to the last two factors. However, the difference between the classifi-

cation accuracy based on geometry and dispersion traits versus this one based on color traits is

significant (around 10 percentage points) and there are some issues requiring future research

investigation.

Indeed, one needs to apply a different method of selecting points on bacteria boundary to

highlight the characteristic elements of its shape. In addition, various parameterizations to esti-

mate the unknown interpolation knots combined with different interpolation fitting schemes

might also be considered [46]. Other methods for object dispersion in the image should also

be examined. In this work we compared the results given by the four classification methods:

Support Vector Machine, Random Forest, K-Nearest Neighbors and Multi-Layer Perceptron.

Other classifiers such as Extreme Learning Machines or Deep Learning Methods may provide

more effective recognition tools. The features in the future research can be also computed

applying Convolutional Neural Networks [47].

The generated results are calculated on the dataset with a single bacteria genera on an input

image. These organisms were grown under laboratory conditions, with no contamination

involved (as they are all immersed in uniform medium). In future research, the testing should

also be performed on images taken from the natural environment (e.g. from the genuine rizo-

sphere sample). The ultimate goal is to classify different bacteria genera mixed with extra

organic or non-organic objects as they cohabit in a real soil sample. More importantly, the

classification results on images that contain different bacteria genera (for example mixes of

two or three genera on one image) should also be examined. In particular, the final recognition

tool should allow to assess the quantity of bacteria cells affiliated to a certain genera on the cur-

rently analyzed microscopic image.

The classification system created in this work can be applied in practice. However, further

research is needed for samples containing strains of different species of bacteria representing

the same genus. These species differ in phenotypic features (morphological, biochemical and

physiological). The number of analyzed strains of bacteria has an important meaning. We are

unable to draw a conclusion from a single photograph of cells or bacterial colonies known to

be of some type of bacteria. As an example, the genus Pseudomonas includes both fluorescent

and non-fluorescent bacterial species. Problems with identifying bacteria based on their mor-

phology result from reasons such as: (i) the influence of the environment, i.e. the composition

of the medium and incubation time on the cell morphology, (ii) the phase of the bacterial cell

cycle, (iii) the common morphology of cells of different types of bacteria. It is worth mention-

ing that so far there are over 10 thousand species of culturable bacteria, with a huge number of

species that cannot be cultured in the laboratory. It is very important to accurately classify the

bacteria as a representative of the appropriate species. The latter permits to decide whether to

use it for utilitarian purpose e.g. in biological protection of plants against diseases or to apply

suitable control against a given organism if it causes diseases (pathogen) or is harmful in any

other respect.
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